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Abstract—Reproducibility plays a crucial role in experi-
mentation. However, the modern research ecosystem and the
underlying frameworks are constantly evolving and thereby
making it extremely difficult to reliably reproduce scientific
artifacts such as data, algorithms, trained models and visual-
izations. We therefore aim to design a novel system for assisting
data scientists with rigorous end-to-end documentation of data-
oriented experiments. Capturing data lineage, metadata, and
other artifacts helps reproducing and sharing experimental
results. We summarize this challenge as automated documenta-
tion of data science experiments. We aim at reducing manual
overhead for experimenting researchers, and intend to create
a novel approach in dataflow and metadata tracking based on
the analysis of the experiment source code. The envisioned
system will accelerate the research process in general, and
enable capturing fine-grained meta information by deriving
a declarative representation of data science experiments.
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automatic tracking of metadata; responsible data management

I. INTRODUCTION

Reproducibility lays at the core of the scientific method.
Publically accessible, reusable artifacts drive science by
enabling researchers to build upon existing knowledge, to
compose it and to transfer it across domains. With the
growing number of data science (DS) applications in almost
every field of research, a burst of a new sort of artifacts -
data, software, interactive demos - makes sharing and reuse
of scientific contributions challenging. On the one hand, this
is due the absence of unified standards for designing end-
to-end data science workflows. On the other hand, there
is a constant and rapid development of new analytical
solutions [1]]-[3]], such as the emergence of deep learning
engines, which enriches the range of tools available in
research, yet makes scientific artifacts extremely hard to
compare. For instance, two pieces of source code for data
loading written with low-level built-in functions and high-
level packages may be semantically equivalent, but it will
be difficult to recognize this due to syntactic differences.
An additional challenge is to support collaborative efforts
of research teams, by providing access to the artifacts for
further reuse across teams and domains.

Modern data-oriented experiments are often conducted
by following a “Try-Fail-Learn-Iterate” paradigm: scientists
focus on fast, iterative exploration and hypothesis testing,
which allows them to quickly understand which ideas work.

Often the need for capturing this dynamic process of ex-
perimenting and prototyping is ignored. As a result, by
the time a data science prototype evolves and demonstrates
promising outcomes, researchers often realize that they
cannot reproduce the experiment, due to the absence of a
‘lab notebook’ that contains the experiment documentation.
Similar problems arise in industry as well [2f], [4].

Observing the aforementioned challenges, we conclude
that automated documentation of experiments is a crucial
requirement for modern research environments. We denote
documentation of data science experiments as the process of
recording all the data that are necessary to achieve full repro-
ducibility of the experiment (source code versioning, end-to-
end tracking of data provenance, environment settings, meta
information, specifications of stochastic processes during
the data science experiment, etc.). The high complexity of
this task makes it time-consuming and tedious to perform
manually. Thus, we formulate the goal for this Ph.D. project
as streamlining the process of end-to-end tracking of data
lineage and meta information, inspecting the artifacts pro-
duced during data science experiments, as well as sharing,
and reusing these results across teams and domains.

There are two major approaches to promote research
reproducibility and encourage experiment documentation
among scientists. The first approach focuses on the extrinsic
motivation of researchers. For example, the ACM created a
policy of artifact review and badging to help SIGs recognize
and acknowledge reproducibility in published research [J5].
The second approach focuses on the technical side. It aims at
providing libraries and systems for tracking and reproducing
experiments [3[], [6]. Although the latter is of great value,
current solutions such as MLflow or Amazon’s solution [4]]
are often either problem- or package-specific (Section [II),
and require manual specification of the metadata to track. To
mitigate this drawback, we envision to design a system that
collects metadata and data lineage automatically, and records
experiments in a way that imposes minimal overhead on the
experimenting user.

We aim to accelerate research in data science and shorten
the innovation cycle for newly developed artifacts. We focus
on two main problems: (i) how to automate the tracking
of metadata, lineage, and other intermediate results of the
experiments without introducing significant overhead (w.r.t.
the total execution time) or requiring scientists to alter the
source code of their experiments; and (ii) how to derive
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Figure 1. Overview of how the envisioned system would address our example scenario. For all DS experiments conducted by the involved individuals,

the system analyses the source code, detects patterns in the intermediate representation and identifies their semantics via a predefined mapping for known
DS frameworks. Next, our systems decomposes the source code into logical segments in accordance with the data science task, and automatically injects

tracking code, which persists meta information, data lineage and other artifacts

a declarative representation of the experiment (a detailed
specification, along the lines of the W3C ML Schema
initiative [[7]]) from arbitrary source code to enable captur-
ing fine-grained metadata. We envision the following key
contributions of the Ph.D. project:

(i) Automated injection of metadata and lineage tracking
calls into DS experiments at runtime via source code
analysis;

Extraction of a declarative intermediate representation
of a data science experiment that identifies phases such
as data preprocessing or model selection;

Design and population of an experiment database to
enable search and reuse capabilities over previous
experiments and their declarative representation.

(i)

(iii)

These contributions potentially have high impact for sev-
eral research areas. The first area is responsible data man-
agement [8]]. Using data responsibly means that the decisions
people make based on data analysis have to comply to ethical
norms and legal regulations. Our proposed solution ad-
dresses several key points of responsible data management:
transparency, accountability and tracking. By recording the
exact pathway the model takes to make predictions, we will
enable retrospective analysis of these pathways to understand
how a particular decision was made, how to reduce bias, and

at runtime.

l

how to make “black-box” machine learning (ML) models
more transparent. In settings where legal obligations bind
researchers or ML engineers, we facilitate presenting evi-
dence whether decisions made by the ML model have been
fair. The second area with potential impact is the automation
of machine learning. By recording the dynamic process of
trials and errors made during the experiments, we are able to
gain insights on how experimenting in data science works in
general, and design novel optimizations for end-to-end DS
workflows.

II. PROPOSED WORK

We introduce an example scenario for our envisioned
system and discuss the automatic injection of metadata and
lineage tracking code into experiments (Figure [I] left).

A. Example Scenario

Imagine Bob who wants to predict the price of an apart-
ment based on its characteristics. He creates a python
script, loads the dataset from the local filesystem, and
conducts exploratory data analysis. He visualizes how house
prices correlate with the features that he extracted (size,
location, etc.). Next, Bob normalizes the data and builds
a linear regression model to test whether the price depends
on the size of the apartment. Performance analysis shows



that the model miscalculates the price by 20,000 euros. He
shares this result with his colleague Alice. She suggests to
use the house location in order to compute distances to the
city center, to nearest stops for public transportation, super-
markets, parks, or schools, and to leverage these features to
improve the model’s accuracy. She takes Bob’s code, adds
the new features, retrains the model, checks whether the
performance has increased, and finds a lower error of only
10,000 euros of misprediction. Bob and Alice then go to
Charlie, a fan of deep learning, who suggests to take the
original dataset and train a deep neural network model that
learns data representation by itself. After several changes in
the model architecture and hyperparameters, Charlie creates
a neural network that mispredicts the price by 5,000 euros.

After prototyping, Bob, Alice and Charlie become curi-
ous. They wonder which factors lead to significant boosts
in model performance and which changes only slightly im-
proved the accuracy. Alice and Bob compare their code in a
straightforward way - the source code version control system
detects the exact changes Alice made; linear regression by
design has an optimal solution that can be easily recomputed.
Later they realize that (1) the data Charlie got from the
remote source differs from Bob’s dataset; (2) Charlie did
not save the model and therefore cannot reproduce the
predictions of the neural network reliably; (3) they cannot
determine which change had been more important - new data
features or the complex model. The system that we propose
is aimed to provide the basis for resolving the problems that
Bob, Alice and Charlie have faced.

B. Automated Documentation in the Example Scenario

If Bob, Alice and Charlie had executed their experiments
with the assistance of our envisioned tracking system, sev-
eral additional steps would occur in the source code com-
pilation phase (as illustrated in the right part of Figure [I).
After parsing the source code (left), the system obtains a
tree-based representation that enables querying over object
and variable names (houses, model), function signatures,
numerical values (Assign, Expr, FuncCall) etc. €. We use
this stringent intermediate representation to detect patterns
in subtrees, match them with a predefined mapping to
existing machine learning libraries (e.g., scikit-learn), and
annotate the corresponding parts in the code. This mapping
contains information about public packages for data analysis
(such as the LinearRegression model from python’s
sklearn package) and the corresponding DS task that each
particular class intends to solve (i.e., regression) @. Other
DS tasks are defined by standard process models in data
science [9] and include data loading, cleaning, integration,
model training, selection and evaluation, communication of
the results etc. The annotations are then used to inject calls
to tracking code into the experiment code, which capture
and persist runtime changes of selected variables €. Next,
we decompose the code into logical chunks based on the

DS task @. Automated source code decomposition is one
of the envisioned key contributions of the project that (i)
allows for a high-level intermediate representation of the
data science process to be encoded in the experiment, and
(ii) captures its logical intermediate results - checkpoints
at the end of each component - for further reuse @. A
high-level representation stored in an experiment database
@ enables advanced querying based on the logical structure
of the experiment. This, in turn, brings new opportunities
for meta-learning and workflow optimization. Furthermore,
it enables automatic restoration of the intermediate results
which accelerates the innovation cycle. As experimenting is
an iterative process, multi-user source code versioning @
helps to track what exact changes in the code affect the
model performance.

Based on the analysis of the source code and its knowl-
edge of the semantics of existing DS software, the system
is able to extract numerical constants (potential hyperpa-
rameters) and to choose which artifacts to track. It can also
invoke package-agnostic calls to infer implicit values (such
as default values that are not present in the code yet affect the
model), and inject tracking calls by altering the source code
in order to “track” the changes at runtime. After the analysis
is completed, the compiler translates the updated syntax tree
into a bytecode representation for further execution. Besides
the experiment itself, the system collects information about
the operating system, hardware specification, and the experi-
ment’s software dependencies. It automatically keeps records
on the whole experiment ecosystem and detects changes that
immediately affect the experiment’s meta information. We
can later analyze this information to determine which factors
influence our experiment (in our scenario, to help Bob, Alice
and Charlie to systematically compare their solutions).

C. Challenges

A major challenge will be to enable the system to handle
scenarios where the semantics of the experiments are diffi-
cult to infer automatically. We give an example of such a
case in Listing[I} This script loads and scales the data, trains
a logistic regression model, and evaluates its performance
without using any high-level packages. Hence, we cannot
leverage our existing knowledge about data science software
APIs. For this case, we aim to (i) analyze experiment
databases to detect frequent patterns that describe each DS
phase; and (ii) evaluate the control flow of the experiment
to detect chains of variable transformations and extract
chunks of code that transform a single placeholder (i.e. the
low-level implementation of data scaling which slices the
dataset, computes means and standard deviations column-
wise without altering any other variables).

In most of the cases, the experiment source code is a
combination of both calls to the APIs of high-level packages
and low-level imperative statements. For instance, eager exe-
cution mode of the tensorflow package might combine a



high-level symbolic definition of a neural network and low-
level declaration of the optimization loop. This approach
enables enhanced debugging capabilities for developers of
neural networks, but makes it more challenging to identify
the appropriate places to inject the tracking code.

# gradient descent learning algorithm
def grad_desc (X, Y, alpha, iterations):
W = zeros((X.shapel[l], Y.shape[ll]))
for i in xrange(iterations):

W —-= alpha % d_cost (X, W, Y)
return W

# loading the input dataset

X_train, y_train, X_test, y_test = load(...)
# manual standard scaling of the data
X_train = zero_mean(X_train) / std(X_train)
X_test = zero_mean (X_test) / std(X_test)

W = grad_desc(X_train, y_train, 0.1, 900)

# measurement of prediction error
mean ( abs (sigmoid(dot (X, W)) - Y))

Listing 1. Direct implementation of logistic regression without reliance on
high-level packages, such as scikit-learn. In this case, it becomes difficult to
understand the semantic structure of the experiments as our system cannot
rely on the knowledge regarding existing libraries.

D. Evaluation

A difficult task in this line of research is to measure
the performance of the envisioned system. We aim to
evaluate the system in two different types of data science
experiments: (i) on manually created examples, where the
information about the logical structure of the experiment,
ML models, hyperparameters, ecosystem is available for
comparison as ground truth, and (ii) on automatically col-
lected examples from public repositories, where the ground
truth can only partially be inferred (e.g., by taking the logical
decomposition of jupyter notebooks into account). We
plan to measure the number of derived DS components and
their classification, to evaluate if the system succeeds in
decomposition. We start with a simple binary comparison
whether the derived structure of the experiment matches the
ground truth, and then develop a more elaborate similarity
score depending on the experimentation scenario. We intend
to compare the intermediate artifacts (lineage, ML models,
performance metrics) of both the original version of the
experiment and a version recreated based on the captured
metadata, to check whether the system achieves reproducible
results. We aim to apply similarity metrics to each arti-
fact computed during the experiment in order to assign a
cumulative similarity score of how well the experiment is
reproduced. Furthermore, we will measure the overhead in
execution time induced by the system on these examples.

E. Implementation

We intend to implement the proposed solution for
python, a programming language of choice in this project,
since it is widely used among researchers and data scientists

for experimenting and prototyping, has low entry barriers,
and contains an extensive list of packages such as NumPy,
pandas, tensorflow or sklearn which facilitate the
development of data analysis artifacts. We limit our scope by
considering use cases which have tabular data as an input.
Algorithms for the source code analysis are, in most cases,
language- and implementation-dependent. Thus, we choose
the language version 3.7.0 and CPython implementation as
the mainstream branch that contains all the edge features of
the language, and leave alternative PyPy implementations
that support JIT optimization for future work. Moreover,
we start with classical sequential data science pipelines
and tackle complex production pipelines (e.g., that involve
multiple data sources or models) later on.

III. RELATED WORK

Academic and industrial research on experiment repro-
ducibility includes many areas, such as the design of exper-
iment databases [6], [[10] and digital libraries [[11], systems
for tracking of metadata and provenance [4]], code versioning
(git and dvc), packaging the artifacts and sharing the
results (docker and quilt). We briefly outline several
existing systems that are related to the project. In the fiels
of ML model diagnosis, MISTIQUE [3]] is a tool that is
capable of storing intermediate results of the experiment, and
deciding whether the artifacts should be materialized or re-
computed on demand. It inherits the goals of ModelDB [|12]]
- a database for long-lived publicly accessible models in
computational neuroscience. In the area of the end-to-end
experiments lifecycle management, Comet, MLflow, and
the system developed at Amazon [4f], [13|] are platforms
that allow tracking and packaging of the experiments, as
well as extracting, storing and managing metadata and
provenance of common ML artifacts. In comparison to these
systems, our solution is package-agnostic and allows for full
automation of experiment documentation without requiring
the user to alter the code or specify the parameters to track.
Collaborative open science platforms, such as OpenML [6]]
and Kipoi [10]], provide simple access to stored machine
learning data, models, pipelines and experimental results.
These systems address the problem of reproducibility and
sharing but do not take the specification of experiments,
metadata tracking, or high-level workflow decomposition
into account. When it comes to packaging of the scientific
artifacts, ReproZip [14] enables automatic collection of
experiments (by tracing system calls) in conjunction with
all required data files, libraries, and environment variables.
Our solution extends the functionality of ReproZip by col-
lecting a declarative specification of the experiment, its
data provenance and meta information. noWorkflow [15]]
is an open-source tool for collecting data provenance from
Python scripts, including data about the script execution and
versioning. It also uses methods of source code analysis such
as the analysis of AST and bytecode. Its key advantage is to



capture data provenance even if no workflow systems are
applied, whereas the goal of our solution is to infer the
workflow and use it for the source code decomposition.

IV. FUTURE DIRECTIONS

Lastly, we outline the expected directions for the final
years of the Ph.D. project. Since collecting and storing
artifacts in all their intermediate states requires excessive
volumes of memory, we need effective compression mech-
anisms. Examples of these mechanisms are delta encoding
for storing various versions of the same artifact, serialization
for compressing the data, hybrid approaches for experiment
databases - in order to achieve optimal performance for
each task (storage mechanism, message passing interfaces,
handling time-series data etc.). An alternative direction is
related to the area of meta-learning. Capturing additional
information about data-oriented experiments (as dynamic
processes with all the intermediate steps being recorded) will
bring new insights on how scientists construct data science
pipelines, lead to new algorithms for automated machine
learning, and accelerate the innovation cycle. Ultimately, the
proposed solution might lead to a fully automated end-to-
end management system for DS experiments.

V. CONCLUSION

Reproducibility plays an important role in research and
ML application development. Artifacts that can be verified
by a third party, ported to another environment, and reused in
the future accelerate the innovation cycle. Although the core
benefits of designing reproducible artifacts are agreed upon,
achieving reproducibility in modern R&D environments is a
complicated task that brings several challenges.

We focus on the challenge of automated lineage and
metadata tracking for data-oriented experiments. We pro-
posed a system for automated injection of metadata and
lineage tracking calls into DS experiments via source code
analysis, and thereby extract a declarative representation
of the experiments. The captured meta information will
facilitate reproducibility, a fine-grained search over the
stored experiment sessions, and their further reuse. Thus,
we envision the area of meta-learning and automation of
end-to-end experiments management systems as promising
future directions.
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