
Sergey Redyuk, TU Berlin, Germany sergey.redyuk@tu-berlin.de

supervised by Volker Markl (TU Berlin) and Sebastian Schelter (NYU)

AUTOMATED DOCUMENTATION OF END-TO-END EXPERIMENTS IN DATA SCIENCE

We would like to acknowledge the support of the Helmholtz Einstein International Berlin Research School in Data Science

(HEIBRiDS), Max Delbruck Center for Molecular Medicine (MDC), TU Berlin, and the Berlin Center for Machine Learning

(BZML) 01IS18037A. We thank Sebastian Schelter (NYU) and Volker Markl (TU Berlin) for guidance and valuable contributions.

Abstract

Data-oriented experiments are hard to reproduce due to rapid undocu-

mented changes, abundance and inconsistency of tools and frame-

works, multi-tenant environment

Goal: end-to-end tracking of workflow provenance and meta infor-

mation, to achieve reproducibility, sharing and reuse of intermediate

artifacts across teams and domains

Contributions

• automated tracking of workflow provenance and metadata at runtime via

source code analysis

• extraction of a declarative high-level representation of a data science ex-

periment

• design and population of an experiment database to enable search and

reuse capabilities over previous experiments

Open Questions and Challenges

Evaluation

• manually annotated example scripts where ground truth

is available, e.g. logical structure of the experiment, ML

model declaration, hyperparameters etc.

• example scripts collected from public repositories where

ground truth can be partially inferred, e.g. jupyter note-

books that are logically splitted into blocks

• metrics: achieved reproducibility (binary), overhead as a

diff in execution time

Semantics

• difficult to infer, e.g. low-level implementations

• the task on arbitrary source code is so far infeasible

• experiment source code is a combination of high-level

APIs (e.g. pandas ecosystem, keras) and low-level imper-

ative statements

• solutions: (i) frequent pattern mining, and (ii) evaluation

of control flow

Use Case

populating a predefined mapping that

matches function signatures to a high-level

data science task (manually, based on user

documentation);

extracting stringent intermediate represen-

tation of the source code;

querying the predefined mapping to identify

source code semantics;

capturing detected workflow provenance

and corresponding meta information, re-

quired for reproducibility;

automated multi-tenant version control sys-

tem to detect changes in source code and

assign them to a particular high-level data

science task;

persisting the intermediate artifacts, e.g. ML

models, figures, user output;

persisting workflow provenance and

metadata associated with a run of the ex-

periment.

1

2

3

4

5

6

7

1 from sklearn.model_selection import train_test_split, GridSearchCV
2 ...
3 data_filepath, target = ‘…’, ‘class’
4 data = pd.read_scv(data_filepath)
5 columns = list(data)
6
7 X, y = data[[col for col in columns if col != target]], data[target]
8 X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=.1)
9
10 categorical_cols = ['workclass', 'occupation', 'marital_status']
11 numeric_cols = ['hours_per_week', 'age']
12 feature_transformation = ColumnTransformer(transformers=[
13 ('cat_features', OneHotEncoder(handle_unknown='ignore'), categorical_cols),
14 ('scaled_numeric', StandardScaler(), numeric_cols)
15])
16 pipeline = Pipeline([
17 ('features', feature_transformation),
18 ('learner', SGDClassifier(max_iter=1000, tol=1e-3))
19])
20 param_grid = {
21 'learner__alpha': [0.0001, 0.001, 0.01, 0.1]
22 }
23
24 search = GridSearchCV(pipeline, param_grid, cv=5)
25 model = search.fit(X_train, y_train)
26 predicted = model.predict(X_test)
27 acc = accuracy_score(y_test, predicted)
28 print("TRAIN. accuracy: %.4f" % (acc))

