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Abstract 

Data-oriented experiments are hard to reproduce due to rapid undocu-

mented changes, abundance and inconsistency of tools and frame-

works, multi-tenant environment 

Goal: end-to-end tracking of workflow provenance and meta infor-

mation, to achieve reproducibility, sharing and reuse of intermediate 

artifacts across teams and domains 

 

Contributions 

• automated tracking of workflow provenance and metadata at runtime via 

source code analysis 

• extraction of a declarative high-level representation of a data science ex-

periment 

• design and population of an experiment database to enable search and 

reuse capabilities over previous experiments 

 

Open Questions and Challenges 

Evaluation 

• manually annotated example scripts where ground truth 

is available, e.g. logical structure of the experiment, ML 

model declaration, hyperparameters etc. 

• example scripts collected from public repositories where 

ground truth can be partially inferred, e.g. jupyter note-

books that are logically splitted into blocks 

• metrics: achieved reproducibility (binary), overhead as a 

diff in execution time 

Semantics 

• difficult to infer, e.g. low-level implementations 

• the task on arbitrary source code is so far infeasible 

• experiment source code is a combination of high-level 

APIs (e.g. pandas ecosystem, keras) and low-level imper-

ative statements 

• solutions: (i) frequent pattern mining, and (ii) evaluation 

of control flow 

 

Use Case 

populating a predefined mapping that 

matches function signatures to a high-level 

data science task (manually, based on user 

documentation); 

extracting stringent intermediate represen-

tation of the source code; 

querying the predefined mapping to identify 

source code semantics; 

capturing detected workflow provenance 

and corresponding meta information, re-

quired for reproducibility; 

automated multi-tenant version control sys-

tem to detect changes in source code and 

assign them to a particular high-level data 

science task; 

persisting the intermediate artifacts, e.g. ML 

models, figures, user output; 

persisting workflow provenance and 

metadata associated with a run of the ex-

periment. 
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1 from sklearn.model_selection import train_test_split, GridSearchCV 
2 ... 
3 data_filepath, target = ‘…’, ‘class’ 
4 data = pd.read_scv(data_filepath) 
5 columns = list(data) 
6  
7 X, y = data[[col for col in columns if col != target]], data[target] 
8 X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=.1) 
9  
10 categorical_cols = ['workclass', 'occupation', 'marital_status'] 
11 numeric_cols = ['hours_per_week', 'age'] 
12 feature_transformation = ColumnTransformer(transformers=[ 
13     ('cat_features', OneHotEncoder(handle_unknown='ignore'), categorical_cols), 
14     ('scaled_numeric', StandardScaler(), numeric_cols) 
15 ]) 
16 pipeline = Pipeline([ 
17     ('features', feature_transformation), 
18     ('learner', SGDClassifier(max_iter=1000, tol=1e-3)) 
19 ]) 
20 param_grid = { 
21     'learner__alpha': [0.0001, 0.001, 0.01, 0.1] 
22 } 
23  
24 search = GridSearchCV(pipeline, param_grid, cv=5) 
25 model = search.fit(X_train, y_train) 
26 predicted = model.predict(X_test) 
27 acc = accuracy_score(y_test, predicted) 
28 print("TRAIN. accuracy: %.4f" % (acc)) 


