

Learning to Validate the Predictions of Black Box ML Models on Unseen Data

Center for **Data Science**

Sergey Redyuk TU Berlin sergey.redyuk@tu-berlin.de

Sebastian Schelter New York University sebastian.schelter@nyu.edu

Tammo Rukat University of Oxford tammorukat@gmail.com

Volker Markl TU Berlin volker.markl@tu-berlin.de

Felix Biessmann Beuth University Berlin felix.biessmann@gmail.com

We propose an approach for non-ML experts to check whether they can trust the predictions of a black box ML model on unseen data

Problems and Challenges

- . Hard-to-trust predictions of black box ML models
- **Drops in quality** of the model predictions, due to unexpected errors / shifts in the data

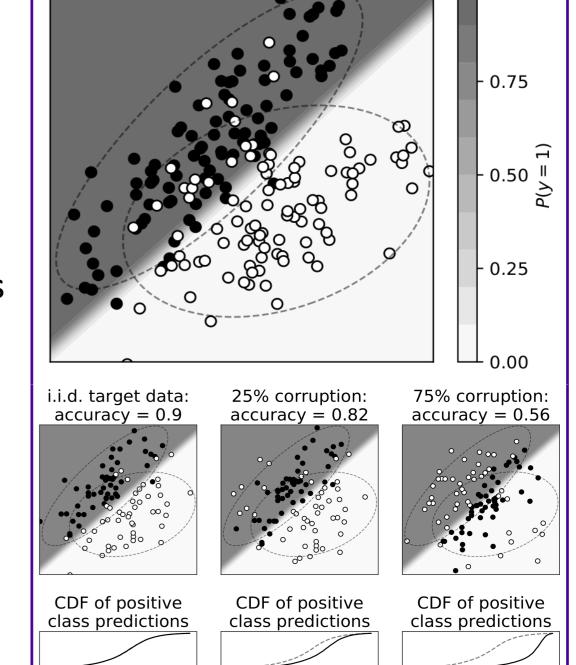
Reliability of Machine Learning Models

- . Most of the ML models operate under the i.i.d assumption
- . No reliability guarantees if the assumption is violated Non-ML experts

Manual Monitoring

ML experts

- make distributional **assumptions** about the source and target data
- apply **specialized** learning **algorithms**



- . Reasons
 - errors in data preprocessing code
 - changes in the data generating process
- . Hard to detect in practice

- software / devops engineers, ETL designers, BI analysts, etc.
- need automated solutions that do not require expertise in statistics

Approach

We (a) learn to predict the performance of a pretrained black box ML model on unseen target data, given the type of the error (e.g., missing values, numeric outliers), and (b) raise alerts if the predicted-vs-real performance mismatch is detected

- 1. Domain expert / end user declaratively specifies the expected types of errors
- 2. We generate synthetically corrupted test data
- 3. We apply the **black box ML model** on the corrupted data
- (a) the **performance** of the model (e.g., accuracy), and 4. We record (b) the **shape*** of the model's output
- 5. We **train a regression model** to predict the performance of the back box ML model

class MissingValues(ErrorGen): def corrupt(data, prob) for row in data: if random() < prob:</pre> row[self.column] = NA

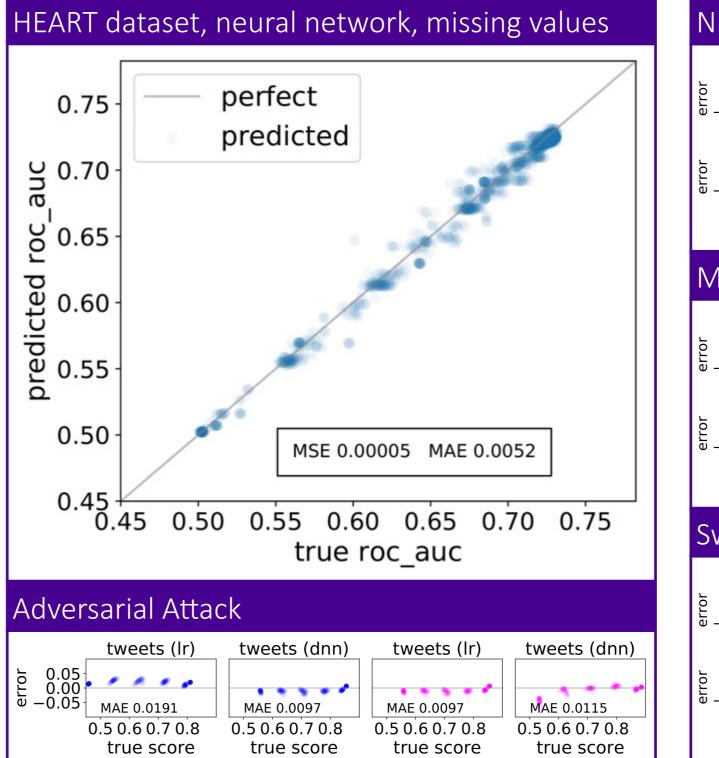
Introduce missing values

Scale values class Scaling(ErrorGen): def corrupt(data, prob): for row in data: if random() < prob:</pre> row[self.column] *= self.factor

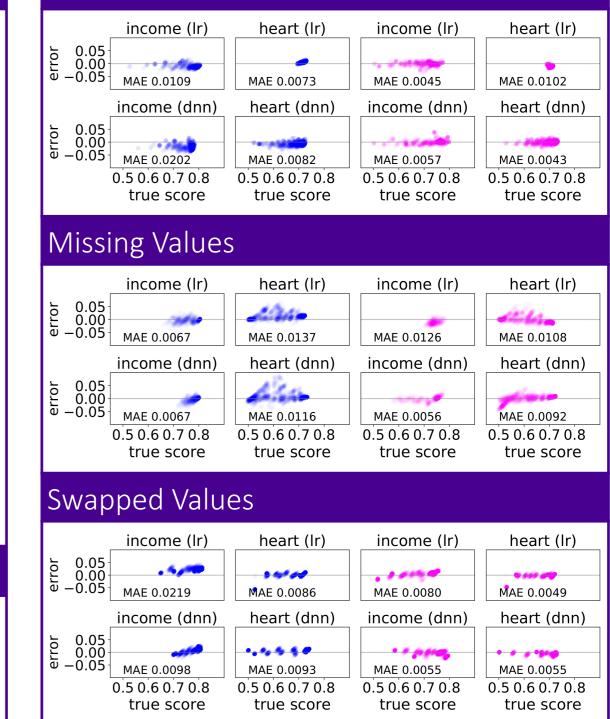
* descriptive statistics over the model's outputs (e.g., percentiles)

Experimental Results

Two black box **ML models** – logistic regression, neural network, four introduced shifts, three datasets



Numeric Outliers



MAE of 0.01 in the majority of cases

We distinguish cases with slight drops in performance from "catastrophic failures"

Advantages

- no distributional assumptions on the dataset shift
- applicable to general black box models that consume raw input data

Future Work

- **Elaborate feedback** to end users
- Performance on combinations of different shifts and errors
- . Performance on **not-yet-seen types of shift**